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The conceptual development of place value is often described as the most 
significant of all number concepts which, when understood, enables students to 
develop a comprehensive sense of number (Reys, Lindquist, Lambdin, & Smith, 
2009).  Disappointingly, the development of place value is seen as an elusive 
concept for pre-service teachers.  This paper reports on a study to determine the 
effect of a problem-based learning (PBL) approach versus a traditional teacher-
centred instructional approach in a university course on pre-service teacher’s 
content knowledge and conceptual understanding of place value.    
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Introduction 
 
Globally, current educational reforms and initiatives prioritise literacy and numeracy 
outcomes for students.  In 2008, the Australian Ministerial Council on Education stated, 
“Literacy and numeracy ... [are] the cornerstones of schooling for young Australians”(p. 5).  
Moreover, in support of a national set of educational goals, “The Australian mathematics 
curriculum focuses on developing increasingly sophisticated and refined mathematical 
understanding, fluency, logical reasoning, analytical thought processes and problem-solving 
skills.” (Australian Curriculum Assessment, 2010, p. 1).   Accordingly, the responsibility for 
achieving these and other goals related to sustaining Australia’s growth and prosperity in a 
competitive global economy is placed with teachers.  Not surprisingly, teacher’s professional 
knowledge bases (Shulman, 1987) have come under scrutiny in an attempt to understand the 
work of teachers and the global changes that have affected the way that teachers go about 
their work (Exley, 2005). 
 
Miller (2003) states, “Effective teaching begins with effective teacher preparation (p. 3).”  
Haystead and Marzano (2009) also advise that university teacher preparation programs should 
focus their efforts on ensuring that graduates have strong content knowledge and are equipped 
to use research-based instructional strategies.  Miller (2003) further suggests that by 
integrating researched-based teaching and learning strategies, teachers would be better 
equipped to bring conceptual understanding to the forefront of student learning.  Miller’s 
study of the American education system “reveals a 39 percentage-point difference in student 
achievement between students with ‘most effective’ teachers and ‘least effective’ teachers” (p. 
2). 

 
The Marzano Research Laboratory (Haystead M. W. & Marzano R. J., 2009) employed  a 
meta-analysis to investigate instructional strategies over a five-year period which involved 
300+ volunteer teachers, 38 schools in 14 school districts in the United States.  Their principle 
findings revealed that, on average, when particular instructional strategies are used, there is a 
16% learning gain between the students’ pre-test and the post-test. Teaching strategies having 
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such a statistically significant impact on student learning certainly warrants identification. 
Three of the instructional strategies investigated that are of particular interest to this paper 
align with the principles of problem-based learning. 
 
Problem-based learning (PBL) 
 
The literature on PBL originated from the medical field in the mid-1950’s.  PBL has since 
been adopted by many other professions including schools of education (Savery & Duffy, 
1996).  Of particular interest to education is Major & Palmer’s (2001, p. 1) definition: 

 
PBL is an educational approach in which complex problems serve as the context 
and the stimulus for learning.  In PBL classes, students work in teams to solve one 
or more complex and compelling “real world” problems.  They develop skills in 
collecting, evaluating, and synthesizing resources as they first define and then 
propose a solution to a multi-faceted problem. 

 
Levin (2001) also suggests that PBL is an instructional method which promotes critical 
thinking and problem-solving skills within the context of real-world problems which result in 
the acquisition of the intended content and conceptual knowledge.  Furthermore, PBL 
instruction is considerably more student-centred than teacher directed. 

 
Terms such as experiential, discovery, student-centred and inquiry learning (IL) have become 
synonymous with the PBL approach.  Some have categorised these terms together as 
examples of the constructivist approach and placed PBL under the umbrella of minimally 
guided instruction (Kirschner, Sweller, & Clark, 2006).  However, on the contrary, PBL 
requires skilled scaffolding of the students’ learning by the teacher.  To imply that PBL 
should be placed under the umbrella of minimally guided instruction does not accurately 
describe the instructional process.  More accurately, PBL should be considered consistent 
with the principles of effective instruction arising from constructivism. 

 
Hemelo-Silver, Duncan, and Chinn (2007) also disagree with the notion of classifying these 
pedagogical approaches under the category of minimally guided instruction and argue that 
these approaches, in particular, PBL and IL, are not minimally guided instructional 
approaches but rather offer extensive scaffolding and direction to support student learning (p. 
99).  For example, under the PBL model, the teacher facilitates the learning process by 
challenging the students’ thinking through the asking of key, high order questions which 
probe deeply into what students know.   This information together with additional 
investigations would be analysed and then synthesised by the students into new coherent 
forms of understanding required to solve the set problems.  The idea being that their learning 
becomes connected rather than isolated and cumulative rather than fragmented (Levin, 2001). 

 
Over the duration of a PBL session, the teacher wears many hats and plays several roles such 
as lecturer, facilitator, coach, evaluator, assessor and supporter.  The facilitator has a 
responsibility to avoid using his or her own content knowledge when asking questions which 
only serve to evoke a ‘correct answer’.    The objective of this avoidance is to move the 
students toward self-discovery of the desired outcome thus allowing them to own the 
knowledge versus being fed the information and/or the solution through the traditional 
teacher-led instructional approach.  In this way, as a real-world or prearranged contextual 
problem whose solution is not immediately apparent is presented, the students become the 
owner of the work and assume responsibility for their own learning.  This ownership becomes 



apparent as students are required, in a PBL environment, to actively rather than passively 
engage in the learning process.  Part of being actively engaged is the incorporation of 
discussion during and after collaborative group work.  The sessions might then conclude with 
projects and/or presentations alongside reflective discussion as students demonstrate their 
understanding of the concept or problem. 

 
Place Value (PV) 
 
Central to the Number strand of the National Council of Teachers of Mathematics’ standards 
is the development of number sense.  Students with number sense naturally decompose 
numbers, solve problems using the relationships of the base-ten system, estimate a sensible 
result for a problem, and have a developed ability to make sense of numbers (National 
Council of Teachers of Mathematics, 2000).  Unfortunately, content knowledge of PV 
systems is a common problem area experienced by university pre-service teachers and their 
conceptual understanding of PV is underdeveloped (Taplin, 1992). 

 
Context of the Study 
 
This paper focuses on pre-service teachers’ conceptual understanding and Mathematical 
Content Knowledge (MCK) with respect to PV systems.  This paper reports the results 
obtained from an analysis of two exam questions categorising students’ MCK of the 
symmetry of the PV using the SOLO Taxonomy (Biggs & Moore, 1993).  

 
The SOLO taxonomy is a classification system which is used to evaluate the quality of 
learning outcomes.  As an evaluation instrument, it distinguishes between and describes 
different levels of increasing complexity in a student's understanding of a subject along a 
developmental continuum of five levels: prestructural, unistructural, multistructural, 
relational, and the extended abstract level. 

 
The participants of this study were first year Bachelor of Education students enrolled in a 
mathematics education course at a regional Australian university (N=58). The course is based 
on the two major curriculum strands of numeration and patterns and algebra.  The data 
collected were from two end-of-semester exam questions, from two consecutive 2009 (n=30) 
and 2010 (n=28) semesters, answered by students who were in attendance both weeks when 
place value was investigated.  In both years, a two-hour whole group lecture was provided in 
traditional fashion in a lecture theatre followed by a two-hour tutorial session.  The difference 
between the ways the students were taught is that during the tutorials, the 2010 group was 
taught using a PBL approach and the 2009 group was taught using a traditional instructor-led 
approach.  Each method was designed to probe students’ MCK related to their conceptual 
understanding of PV systems and their symmetry. 
	
  
Instructional Process in 2009 
 
Following the two-hour instructor-led lecture, the tutorial instructional process began by 
providing the students with the appropriate manipulative materials (base-10 and base-5 
blocks).  The first tutorial question asked the students to look at the base-5 and base-10 blocks 
and to then convert 245base10 to its equivalent number in base-5.  Through direct observation it 
was apparent that students possessed an inadequate content and conceptual understanding of 
PV to work out the solution unassisted.  The vast majority easily built 245 in base-10 with the 
base-10 blocks (Figure 1).  However, most could not build an equivalent number in base-5. 



 

 
 

Figure 1: Base-10 blocks 
 

Consequently, the process of the conversion was demonstrated, by the instructor, to the 
students on the whiteboard in symbolic fashion reminiscent of how it was shown in the power 
point slides of the lecture (Figure 2). 

 

 
 

Figure 2: Conversion demonstration 
 

Students were next asked to add 24base 5 and 13base 5.  Once again, most students could not 
apply the concept of the base-10 system and transfer that knowledge to add two numbers in 
another base system even with the assistance of concrete materials.  In fact, the vast majority 
of students were not able to set the problem up correctly onto the PV mats.  Not surprisingly, 
students struggled when asked to investigate the differences between the two PV systems.  
When asked to collaboratively build a pedagogical content knowledge understanding directed 
around the central question, “How would I help my students understand this” they were 
unable to respond.  As a result, the instructional approach became teacher-centred where the 
instructor owned the knowledge and provided it to the students through a concrete and 
symbolic demonstration accompanied by an explanation. 

 
In week two with the 2009 group, students were required to discover and describe the 
symmetry of different number systems, the role of the decimal point in those systems, the 
number of different digits needed for each system and the largest digit that could be used in 
each system. 

 
The first question of the tutorial in week 2 requested students to look at a set of base-10 
blocks and draw their representation of what base-2 blocks might look like.  Through direct 
observation it again was apparent that students would need a great deal of guidance and 
support to be assured they had correctly sketched an accurate representation of base-2. 

 



The next question required students to calculate the base-10 values of binary numbers from a 
base-2 PV chart (Figure 3).  Following that exercise, they were then asked to fill in the 
missing components of a base-2 PV pattern, describe the pattern, and then extend the pattern 
on either end by 2 more places. 

 

 
 

Figure 3: Base-2 PV chart 
 
With minimal guidance by the instructor and having the value of the base-2 houses supplied 
above question 1.a. in Figure 3, students were, on the whole, successful in calculating the 
values of each house of the base-2 system.  With further explanation and demonstration, 
students were able to complete the remaining questions of converting the base-2 numbers to 
values in base-10 (Figure 3). 

 
Following the conversion of base-2 to base-10 questions, students were asked to convert 
28base10 to a number in base-2.  This conversion problem is similar to last week’s problem, 
converting 245base10 to its equivalent number in base-5 and met with similar results.  By 
observation it was apparent most students still possessed an inadequate content and 
conceptual understanding of PV to work out the solution.  And once again, the process of the 
conversion was demonstrated, by the instructor to the students, on the whiteboard in symbolic 
fashion reminiscent of the lecture’s power point slides (Figure 2). 

 
The next question asked students to list as many base-10 PV concepts, or properties, as they 
could.  This question was met primarily with answers from the majority of students that 
reflected a prestructural or unistructural (Biggs & Moore, 1993) understanding of the concept 
of PV.  In other words, student responses were stated as acquired pieces of disconnected 
information with little understanding of the core concepts.  Only simple and obvious 
connections were stated if at all.  Yet even those were realized comparatively independent of 
each other and therefore the significance of the connections between their isolated pieces of 
information were not grasped (Biggs & Collis, 1989). 

 
The final question was a yes or no query which asked, “Could you construct the places for 
base-3 or base-6 or any base e.g., base-X”?  Students were not required to demonstrate this, 
but were alerted to the fact that they might have to answer this on the exam.  This was an 
assumed content knowledge prerequisite for the course.  Furthermore, as a methods course, 
the instructor’s objective was to teach mathematics pedagogy not content.   



 
Instructional Process in 2010 

 
For experimental validity purposes, the two hour lecture in 2010 was presented using an 
archived, recorded version of the 2009 lecture. Also, as in the 2009 cohort, the 2010 group 
were required to complete all the same tutorial tasks and questions and provided with the 
same concrete materials.  However, this group was instructed using a student-centred, PBL 
approach.  The goal was to guide the students to self-discovery and ownership of the intended 
learning outcomes through the use of specific PBL activities and key questioning techniques 
while avoiding providing them with any teacher-owned knowledge. 

 
Utilizing the PBL approach, strategically designed tasks preceded several tutorial questions.  
This strategy required students to complete these specific tasks which tapped into their pre-
existing knowledge while also collaborating with their peers.  In anticipation of this cohort 
also possessing an inadequate content and conceptual understanding of PV, a content 
knowledge intervention task was introduced. 

 
The students were guided through a process where they were to come to their own 
understanding as to why any number raised to the zero power is 1.  The task was to first 
evaluate .  After the students collaborated, the two common responses received were =   
2 x 2 x 2 x 2 x 2 x 2 x 2 and = 128.  Both of these answers were posted on the whiteboard 
without any elaboration by the teacher. 

 
The students were then asked to evaluate  x .  Again after collaboration, the three agreed 
upon responses were (2 x 2 x 2) x (2 x 2 x 2 x 2), 8 x 16 and 128.  These responses were also 
posted on the whiteboard without comment by the teacher. 

 
The next task in this self-discovery activity asked students to evaluate .  As anticipated, 
responses to this evaluation yielded answers such as (2 x 2 x 2) x (2 x 2 x 2 x 2), 8 x 16 = 128, 
and as hoped, x  = .  These too were posted on the board for analysis and reflection. 

 
The final question in this task required students to explain why, if = , what the value 
of  was.  After directing the students to use the previously posted problems and solutions 
to analyse this problem, the students collaborated and responded that if   = x  
which is = , then  must = .  This conclusion then led to the final question, “If  = 
8, and x = 8, then what must equal”?  This activity produced what the researcher 
likes to call an “ah ha” moment or moment of enlightenment in which the students 
synthesized for themselves that any number raised to the zero power is one. 

 
Guided through another series of self-directed learning activities, students were challenged to 
transfer their existing knowledge of the base-10 system to discover answers to base-5, base-2 
and base-P type queries which were systematically and strategically provided by the 
instructor.  This PBL activity first required students, in collaborative groups, to reinforce their 
understanding of the symmetry of the base-10 system by filling in the missing cells of a pre-
designed template (Table 1). 

 
Table 1: Base-10 pattern system chart 

 



	
         	
   	
  
1000  10   1/100  

10 x 10 x 10  10    1/(10 x 10 x 10) 

Thousands Hundreds Tens    Thousandths 

 
To enable students to generalize their understanding of the base-10 system, a similar template 
was completed in collaborative groups on the base-5 system and reflected on through class 
discussion.  Further to this activity was a short session on building the number 245 side-by-
side in both base-5 and base-10 (Figure 4). 
 

 
 

Figure 4: Building the number 245 side-by-side in Base-5 and Base-10 
 
It was anticipated that by this point in the instructional sequence students would have a higher 
degree of success in completing the first tutorial question which was to convert 245base10 to a 
number in base-5.  With their base-5 blocks, students collaborated to build 245 on their newly 
completed base-5 PV mats.  With guided conversation students in the 2010 group were able to 
visualize and realize, through their own concrete representations, 245base10 as 1440base5.  This 
activity was further followed by a guided symbolic demonstration reminiscent of how it was 
shown in the power point slides during the lecture (Figure 2) to allow for discussion and 
reflection. 

 
The next tutorial question asked students to add 24base5 and 13base5. Using a PBL approach 
students were asked to first demonstrate adding 24 and 13 in base-10.  This scaffolding 
strategy reinforced an old skill of setting up a basic base-10 addition problem correctly on a 
base-10 PV mat.  Once accomplished, the students were then asked to build the addition 
problem in base-5 on the base-5 PV mat using the base-10 example as a guide.  Students, 
through collaboration and peer self-check, successfully set-up and completed the addition 
problem using their base-5 blocks and mats (Figure 5). 

 



 
 

Figure 5:  Adding 24base5 and 13base5 
 

The next PBL activity was designed to scaffold students’ understanding, by building upon the 
previous week’s activities, and then reinforce and extend their understanding of the symmetry 
of the base-10, base-5, and base-2 system by filling in the missing cells of pre-designed 
templates (Table2, Table 3, and Table 4). 

 
Table 2: Base-10 pattern system chart [week 2] 

 
 102  101 100   10-3 

10 x 10 x 10  10  1/10 1/100  

 100   .1   

 
Table 3: Base-5 pattern system chart [week 2] 

 
 52 51 50   5-3 

5 x 5 x 5  5  1/5 1/(5x5)  

 25   .2   

 
Table 4: Base-2 pattern system chart  

 
 22 21 20   2-3 

2 x 2 x 2  2  1/2 1/(2x2)  

 4   .5   

 
With the PBL extension activities completed, students were asked to engage in the first 
tutorial question, “look at the base-10 blocks.  Draw your representation of what base-2 
blocks might look like.”  To support this activity, students were provided with a two-



dimensional representation of base-10 and base-5 blocks (Figure 6) and, using a piece of 
graph paper, directed to generalize and then draw what the base-2 blocks would resemble.  

 
Figure 6: Two dimensional representation of multi-based arithmetic blocks 

 
Completing this task, and the previous task in Table 4, enabled the majority of students to 
calculate the base-10 equivalency of the binary numbers (Figure 3).  Furthermore, they were 
highly successful in completing the related tutorial tasks of filling in the missing components 
of the base-2 place value pattern, describing the pattern, and then extending the pattern on 
either end by 2 more places.  

 
Students were next asked to convert 28base10 to a number in base-2.  Collaboratively they set up 
the number 28 onto their base-10 PV mats and then built 28 on their base-2 mats.  
Consequently, students were able to visualize, realize and then demonstrate the conversion of 
28base10 to 11100base2.  The tutor followed the activity with a guided symbolic demonstration, 
on the whiteboard, of the conversion process to stimulate discussion and facilitate student 
reflection of their learning. 

 
The next question asked students to list as many base-10 place value concepts, or properties, 
as they could.  The 2010 tutorial group responded with answers which indicated unistructural, 
multistructural or relational (Biggs & Moore, 1993) understandings of the concept of PV.  In 
other words, student responses were stated at a level where simple, yet important connections 
were made as well as responses that indicated an attainment of what could be considered an 
adequate understanding of the topic (Biggs & Collis, 1989). 

 
The final question asked, “Could you construct the places for base-3 or base-6 or any base 
e.g., base-X”?  This question was this time preceded by another activity which required 
students, in collaborative groups, to reinforce and then extend their understanding of the 
symmetry of different base systems by filling in the missing cells of a pre-designed template 
for base-P (Table 5). 
 

Table 5: Base-P pattern system chart  
 

 P2 P 1 P 0   P -3 

P x P x P  P     

 
It was anticipated, based on observation of the students during the tutorial sessions, that the 
2010 group given instruction using a PBL approach would demonstrate a higher number of 



correct answers on the exam questions versus the 2009 group taught using the teacher-centred 
approach. 
 
Method of Analysis 
 
This study compared the data obtained from students’ responses to two end-of-year semester 
exam questions, namely: 

 
1. What is your understanding of the term “place value”? 
2. Demonstrate your understanding of the symmetry of any place value system by 

completing all 16 empty cells in Table 6 below. 
 

Table 6:  Exam question investigating MCK of place value 
 

Base 
103  101 100 10-1  10-3 

10 1000    0.1  0.001 
        

Base 53  51 50 5-1 5-2 5-3 
5  25 5   0.04  
        

Base a3 a2   a-1 a-2 a-3 
a  axa a  1 

a 
1 

axa 
 

 
The responses to the exam questions were analysed using two different methods. The 
responses to Question 1 from both cohorts were coded using the SOLO Taxonomy to evaluate 
student responses.  The responses from Question 2 were analyzed using an independent-
samples t-test to compare the means between the two trial groups by year of the exam.  The 
Statistical Package for the Social Sciences (SPSS) was used to analyse the data. 

 
Results 
 
The students’ responses to exam Question 1: What is your understanding of the term “place 
value?” were coded (prestructural=1; unistructural=2; multistructural=3; and relational=4) 
and compared by year using the Chi-square test to investigate the relationship between the 
two cohorts.  Table 7 provides the percentage of students for each of the first four SOLO 
levels by year of exam as well as exemplar student responses for each of the four levels. 

 
Table 7:  Student response levels for Question 1 

 
Level of 

Understanding 
2009  

Group 
2010  

Group 
Indicative Student Responses 

 
Prestructural 
 

 
9 (30%) 

 
5 (17.9%) 

 
The mother of all mathematics concepts. 

 
Unistructural 
 

 
19 (63%) 

 
16 

(57.1%) 

 
The value of a number is determined by the 
place it is in. 



 
Multistructural 
 

 
2 (7%) 

 
7 (25%) 

 
A numbers position determines its value.  A 
numeral can have multiple values. 

 
Relational 
 

 
0 

 
0 

  
Symmetry runs through the ones house 
creating a mirror image on either side – 
tens/tenths.  This forms a pattern where 
each house is ten times larger than the  
house to the right. 

 
Totals 

 
30 (100%) 

 
28 (100%)  

 
The Chi-square test indicated a non-significant difference between the two year groups’ level 
of understanding.  As can be seen in Table 7 however, more students from the 2010 cohort 
provided a multistructural response and less student responses were prestructural (meaning 
they provided a totally incorrect response).  In teaching terms, one hopes that an intervention 
such as PBL will impact positively on student learning outcomes.  The researchers believe, 
based on these results, as well as observations of the students working on the set tutorial tasks 
each year, that the change in pedagogy to a PBL approach shows promise, even though the 
result in this study was not statistically significant. 
 
Each of the 16 empty cells in Question 2 (Table 6) was given 1 mark for a correct answer and 
a 0 for an incorrect response.  When the overall scores out of 16 were compared by year 
group, the results again indicated a non-significant difference between the year groups.  Table 
8 provides the mean and standard deviation for each cohort’s overall score out of 16. 

 
Table 8:  Overall mean scores for each cohort 

 
 Year N Mean Std. Deviation 
 

Sum of 
Scores 

 
 

 
2009 

 
2010 

 
30 
 

28 

 
12.40 

 
13.75 

 
3.76 

 
1.71 

 
Finally, Table 9 provides the number and percent of students in each cohort who were able to 
complete the pattern by naming or calculating the value for each of the three place value 
systems (Table 6).  Students had most difficulty with the fraction places and with naming the 
ones place.  They also had less success when asked to generalise their understanding by 
naming the bases in a base a system. 

 
Table 9:  Student responses to exam Question 2 

 
Missing Cells-Table 6 Correct/Incorrect 2009 Group 2010 Group 

102 Correct/ 
Incorrect 

28 (93%) 
2 (7%) 

28 (100%) 
0  

100 
 

Correct/ 
Incorrect 

28 (93%) 
2 (7%)	
  

28 (100%) 
0 

10 Correct/ 28 (93%) 28 (100%) 



 Incorrect 2 (7%)	
   0 
1 
 

Correct/ 
Incorrect 

24 (80%) 
6 (20%) 

26 (93%) 
2 (7%) 

10-2 Correct/ 
Incorrect 

28 (93%) 
2  (7%) 

28 (100%) 
0 

0.01 
 

Correct/ 
Incorrect 

26 (87%) 
4 (13%) 

27 (96%) 
1 (4%) 

125 
 

Correct/ 
Incorrect 

27 (90%) 
3 (10%) 

27 (96%) 
1 (4%) 

52 Correct/ 
Incorrect 

28 (93%) 
2  (7%) 

28 (100%) 
0 

1 Correct/ 
Incorrect 

24 (80%) 
6 (20%) 

24 (86%) 
4 (14%) 

0.2 
 

Correct/ 
Incorrect 

5 (17%) 
25 (83%) 

6 (21%) 
22 (79%) 

0.008 
 

Correct/ 
Incorrect 

3 (10%) 
27 (90%) 

5 (18%) 
23 (72%) 

a x a x a 
 

Correct/ 
Incorrect 

25 (83%) 
5 (17%) 

28 (100%) 
0 

a1 Correct/ 
Incorrect 

28 (93%) 
2  (7%) 

27 (96%) 
1 (4%) 

a0 Correct/ 
Incorrect 

28 (93%) 
2  (7%) 

27 (96%) 
1 (4%) 

1 
 

Correct/ 
Incorrect 

20 (67%) 
10 (33%) 

21 (75%) 
7 (25%) 

1/(a x a x a) 
 

Correct/ 
Incorrect 

22 (73%) 
8 (27%) 

27 (96%) 
1 (4%) 

 
Conclusion 

 
It has been long recognised that “...the real mathematical thinking going on in a classroom, in 
fact, depends heavily on the teacher’s understanding of mathematics” (Ma, 1999).  
Unfortunately, many soon-to-be teachers, as this study further demonstrates, have limited 
understanding of mathematical concepts such as place value. In this study both cohorts’ MCK 
was weakest when working with decimal fractions and when generalising their understanding 
of place value to any base.  No students in either cohort, irrespective of teaching method, 
appear to possess a relational understanding of place value. 

  
However, the PBL pedagogy may be responsible for the increase in the number of students in 
the 2010 cohort who appear to possess a multistructural understanding of the place value 
concept. Unfortunately, due to the relatively small sample size of each year group, a causal 
relationship cannot be drawn from this study. What can be stated clearly is that pre-service 
teachers have a less than desirable understanding of place value and ability to operationalise 
this understanding by naming the places in different bases. This lack of MCK with respect to 
place value needs to be addressed in order that their misconceptions are not transmitted to 
their students after they graduate.  Hence, it may be suggested from this study and from other 
similar studies that if teacher knowledge of subject matter, student learning, and teaching 
methods are all important elements of teacher effectiveness (National Commission on 
Teaching and America’s Future, 1996); and, effective teaching begins with effective teacher 



preparation, then university teacher preparation programs should focus their efforts on ensuring 
that pre-service education graduates have strong MCK and are equipped to use research-based 
instructional strategies such as the problem-based learning approach (Miller, 2003). 
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