every challenge is an opportunity

ONLINE PEDAGOGY
WIKIPEDIA
COMMUNICATIONS-INTENSIVE COURSES

Alex Webb
Laboratory for Space Research
Earth and Planetary Sciences
aagwebb@hku.hk
every challenge is an opportunity
My Himalaya Term Paper

By Mr. Did-it For-the-Grade.

Such-and-such a date.

The Himalaya.

The Himalaya is a geological region. It's probably really interesting but I wrote this paper in a rush last night so please don't mind my misspellings and somehow find this blather interesting or just get bored and stop reading it and give me a decent grade because faults and folds. Actually come to think of it the Himalaya has faults and folds, because it's a contractional mountain belt. And already this is better than a lot of term papers! Still, no references so far ;) ... let's keep it that way! Ultimately this term paper, like most others, is a tale told by an idiot, full of sound and fury and flowery stuff meant to seem super smart and fill space, signifying nothing.
Lesser Himalayan Strata

One of the major depositional strata in the Himalaya is the Lesser Himalayan Strata from the Paleozoic to Mesozoic eras. It had a quite different marine succession during the Paleozoic, as most parts of it are sparsely fossiliferous or even devoid of any well-defined fossils. Moreover, it consists of many varied lithofacies, making correlation work more difficult. This article describes the major formations of the Paleozoic – Mesozoic Lesser Himalayan Strata, including the Tal Formation, Gondwana Strata, Singtal Formation and Subabru Formation.

Contents

Geological background
Tal Formation
Gondwana strata
Central Himalaya – Central and Western Nepal
Eastern Himalaya – Bhutan
Singtal and Subabru formations
Singtal Formation
Subabru Formation
Distinctions between the Singtal and Subabru Formations
Geological significance during Paleozoic to Mesozoic times
Gondwana strata
Tectonic events related to Singtal Formation
Tectonic events related to Subabru Formation
See also
References

Geological background

The Himalayan mountain chain is a fold and thrust belt that can be divided into four units bounded by thrusts from south to north: the Sub-Himalaya, Lesser Himalaya, Greater Himalaya and Tethyan Himalaya. The Lesser Himalayan Zone has a lower relief and elevation of the mountains compared to Greater Himalaya. The Lesser Himalayan Sequence (LHS) is bounded by two main thrusts: the Main Central Thrust (MCT) in the north and the Main Boundary Thrust (MBT) in the south. The main layers of the LHS includes non-fossiliferous, low-grade, metasedimentary rocks, metavolcanic strata and augen gneiss. These have been dated as an age ranging from 1.9 to 520 Ma (i.e. Proterozoic to Cambrian). Near the end of the Early Cambrian, there was a regional diastrophism (i.e. deformation of the Earth’s crust) or crustal movement that began up the Indian subcontinent, interrupting the sedimentation in the Lesser Himalaya and causing a widespread unconformity in Nepal. This is known as the Great Lesser Himalayan Unconformity, which separates the older LHS from the overlying younger LHS that has an age of Permian to Middle Eocene.

During the Paleozoic and Mesozoic, the LHS starts from the basal Tal Formation, which is part of the Outer Lesser Himalayan sequence in the Garhwal Himalaya. The Tal was deposited between the period of the Late Proterozoic to Paleozoic Cambrian. After that, there was a great hiatus between the Middle Proterozoic rocks and the overlying Paleozoic-lower cretaceous strata. This indicates that the LHS experienced a long period of denudation or
WEEK 1

4-Sep-19
1. Regional Geology: Topics, Solving Problems
2. Introduction to Wikipedia Project

6-Sep-19
1. The Canadian Rockies: fold-and-thrust belts
2&3. How to make a Wikipedia page (bring your laptop to class) & Wiki rubric draft

READING 1: Dahlen, 1989

WEEK 2

11-Sep-19
1. The Canadian Rockies: fold-and-thrust belts
2&3. How to draw in Inkscape (bring your laptop to class) & Wiki rubric finalized

13-Sep-19
1. Commonalities of the Alps, Tatra, Variscan, Himalayan tectonics and surface processes
2. Mini-lecture: how to make an evolutionary diagram (adv vs retr subd zones)

READING 2 - one of Montgomery and Stolar, 2006; Malaeville, 2010

EXTRA (not required) READING - Webb, 2013

DUE: SELECTION OF WIKI TOPIC, Turn in to Web via email (25 points)

WEEK 3

18-Sep-19
- **Welcome to East Asia!**
- **Welcome to East Asia! Here’s how it works.**

20-Sep-19
- **Welcome to East Asia! Here’s how it works.**
- **See your Wikipedia page.**

22-Sep-19
1. From the western USA to Tibet, tectons, core complexes, extensional tectonics
2. Informal team presentation: how to explain a tectonic map

READING 3 - one of Conay and Harris, 1984; Wernicke and Ann, 1985; Kopp et al, 2008

EXTRA (not required) READING - Liestol & Liestol, 1989; McQuarrie & Wehrner, 2005

DUE: By this class, you must obtain approval for your Reading 4 / Exam Part A paper.

1. **EXAM 1, Part A** (35 points)

2. In-class exercise: presenting chosen paper

3. READING 4 - Student choice, each student must choose a fully distinct paper that we will not otherwise read!

WEEK 4

10-Oct-19
1. Halley cells and the Andes, the Moomor and the Himalayan tectonics and climate
2. Informal team presentation: how to explain a tectonic route

READING 5 - one of Montgomery et al et al, 2001; Cift et al., 2008; Bore and Xiang, 2010

DUE: By this class, you must obtain approval for your Exam 1 Part B paper (READING 9).

1. **EXAM 1, Part B** (30 points)

2. In-class exercise: thermostratigraphy prediction experiment 1

WEEK 5

24-Oct-19
- **Wikipedia (1) feedback and (2) reflection notes posted to wiki**

21-Oct-19
- In-class Wikipedia feedback session

25-Oct-19
- Odd regions: plate tectonics, salt tectonics, synclines, drapes

READING 7 - one of Puberty and Foreman, 2004; Sibbes and Semen, 2005; Doyelles et al., 2009; Yin and Taylor, 2011; Koon et al., 2013; Boudack & Ehlers, 2014; Magni, 2019

WEEK 6

04-Oct-19
- The closure of the Tethyan Ocean: from mantle dynamics to climate

READING 6 - one of Worzel & Spakhman, 2000; Kopp et al., 2007; Reimann et al., 2010; DelCelles et al., 2011; Stulldi et al., 2011; Schmid et al., 2014; Webb et al., 2017

DUE: **WIKIPEDIA DRAFT PAGE** turn in to Web via email with link to your wiki (45 points)

WEEK 7

11-Oct-19
Reading / field trip week: 16-19 October.

WEEK 8

22-Oct-19
- **Wikipedia (1) feedback and (2) reflection notes posted to wiki**

23-Oct-19
- In-class Wikipedia feedback session

25-Oct-19
- Odd regions: plate tectonics, salt tectonics, synclines, drapes

READING 7 - one of Puberty and Foreman, 2004; Sibbes and Semen, 2005; Doyelles et al., 2009; Yin and Taylor, 2011; Koon et al., 2013; Boudack & Ehlers, 2014; Magni, 2019

WEEK 9

08-Nov-19
- Tracking geological evolution: thermochronologic techniques

READING 8 - Hall et al., 2019 in press Techniques

DUE: By this class, you must obtain approval for your Exam 1 Part B paper (READING 9).

01-Nov-19
1. **EXAM 1, Part B** (30 points)

2. In-class exercise: thermochronology prediction experiment 1

WEEK 10

06-Nov-19
1. In-class Wikipedia feedback session

21-Nov-19
1. In-class exercise: thermochronology prediction experiment 2

WEEK 11

12-Nov-19
- Barberton, Isua, Pilbara 1: lithologies and deformation patterns of early Earth

READING 11 - one of Cloutte et al., 1990; Komijji et al., 1999; Van Kranendonk et al., 2019; Byerly et al., 2007; Nutman and Friend, 2009; Arndt et al., 2015

1. In-class exercise: thermochronology prediction experiment 3

WEEK 12

15-Nov-19
- Barberton, Isua, Pilbara 2: tectonic models of early Earth

READING 12 - one of Snee, 2008; Van Kranendonk, 2010; Moore & Webb, 2011

2. In-class Wikipedia feedback session

22-Nov-19
- Barberton, Isua, Pilbara 2: tectonic models of early Earth

READING 12 - one of Snee, 2008; Van Kranendonk, 2010; Moore & Webb, 2011

DUE: By this class, you must obtain approval for your Exam 2 paper (READING 14).

29-Nov-19
- **EXAM 2** (50 points)

FINAL WIKI PROJECT DUE: Noon, 19-Dec-19 (60 points) + Reflection / feedback report (5 points)
| WEEK 1 | 04-Sep-19 | 1-- Regional Geology: Topics, Solving Problems
2-- Introduction to Wikipedia Project
06-Sep-19 | 1-- the Canadian Rockies: fold-and-thrust belts
2&3-- How to make a Wikipedia page (bring your laptop to class) & Wiki rubric draft
READING 1 - Dahlstrom, 1969 |
| WEEK 2 | 11-Sep-19 | 1-- the Canadian Rockies: fold-and-thrust belts
2&3-- How to draw in Inkscape (bring your laptop to class) & Wiki rubric finalized
13-Sep-19 | 1-- Commonalities of the Alps, Taiwan, Variscan, Himalaya: tectonics and surface processes
2-- Mini-lecture: how to make an evolutionary diagram (adv vs retr subd zones).
READING 2 - one of Montgomery and Stolar, 2006; Malavieille, 2010
EXTRA (not required) READING - Webb, 2013 |
| WEEK 3 | 18-Sep-19 | Welcome to East Asia!
20-Sep-19 | Welcome to East Asia! Here's how it works.
DUE: SELECTION OF WIKI TOPIC, Turn in to Webb via email (25 points) |
| WEEK 4 | 25-Sep-19 | 1-- From the western USA to Tibet: rifts, core complexes, extensional tectonics
2-- Informal team presentation: how to explain an evolutionary diagram
READING 3 - one of Coney and Harms, 1984; Wernicke and Axen, 1988; Kapp et al., 2008
EXTRA (not req.) READING-Lister&Davis,1989; McQuarrie&Wernicke,2005 |
| DUE: | By this class, you must obtain approval for your Reading 4 / Exam 1 Part A paper.
27-Sep-19 | 1-- EXAM 1, Part A (30 points)
2-- In-class exercise presenting chosen paper.
READING 4 - Student choice, each must choose a fully distinct paper that we will not otherwise read! |
| WEEK 1 | 04-Sep-19 | 1-- Regional Geology: Topics, Solving Problems
| WEEK 1 | 04-Sep-19 | 2-- Introduction to Wikipedia Project
| | 04-Sep-19 | 1-- the Canadian Rockies: fold and thrust belts
| | 04-Sep-19 | 2&3-- How to make a Wikipedia page (bring your laptop to class) & Wiki rubric draft
| WEEK 2 | 11-Sep-19 | 1-- the Canadian Rockies: fold-and-thrust belts
| | 11-Sep-19 | 2&3-- How to draw in Inkscape (bring your laptop to class) & Wiki rubric finalized
| | 11-Sep-19 | 1-- Commonalities of the Alps, Taiwan, Variscan, Himalaya: tectonics and surface processes
| | 11-Sep-19 | 2-- Mini-lecture: how to make an evolutionary diagram (adv vs retr subd zones).
| | 11-Sep-19 | READING 2 - one of Montgomery and Stolar, 2006; Malavieille, 2010
| | 11-Sep-19 | EXTRA (not required) READING - Webb, 2013
| DUE: | | SELECTION OF WIKI TOPIC, Turn in to Webb via email (25 points)
| WEEK 3 | 18-Sep-19 | Welcome to East Asia!
| WEEK 3 | 20-Sep-19 | Welcome to East Asia! Here's how it works.
| WEEK 4 | 25-Sep-19 | 1-- From the western USA to Tibet: rifts, core complexes, extensional tectonics
| WEEK 4 | 25-Sep-19 | 2-- Informal team presentation: how to explain an evolutionary diagram
| | 25-Sep-19 | READING 3 - one of Coney and Harms, 1984; Wernicke and Axen, 1988; Kapp et al., 2008
| | 25-Sep-19 | EXTRA (not reg.) READING-Lister&Davis,1989; McQuarrie&Wernicke,2005
| DUE: | | By this class, you must obtain approval for your Reading 4 / Exam 1 Part A paper.
| 27-Sep-19 | | 1-- EXAM 1, Part A (30 points)
| 27-Sep-19 | | 2-- In-class exercise presenting chosen paper.
| | 27-Sep-19 | READING 4 - Student choice, each must choose a fully distinct paper that we will not otherwise read!
ONLINE PEDAGOGY
WIKIPEDIA

Chat CL4.17

PHILIPPE COURTIAL - EGU Office (14:52) Hi everyone, I am looking forward to participating in this exciting session.

SUSANNE BUITER RWTH AACHEN (convener) (14:52) We will discuss the displays in order of appearance (see the box to the right). Each author is asked for a 1-2 sentence introduction (please prepare). Then we will take questions.

P. van der Beek, Univ. Grenoble, Author (14:52) Hi all, I'm the author of Display D3899 and am excited to present this work.

SUSANNE BUITER RWTH AACHEN (convener) (14:52) As conveners we have prepared overarching questions based on the displays for an open discussion at the end of the chat.

Hazel Gibson, EGU Office (14:52) Hello everyone, I am looking forward to this chat!

TERRI COOK (14:52) Me too!

Chat time: 14:00–15:45

D3883 | EGU2020-15589
Climate change in mountains around the globe: Elevation dependencies and contrasts to adjacent lowla [...]
Enrico Arnone et al.

D3884 | EGU2020-18274
Detection of precipitation and snow cover trends in the the European Alps over the last century using [...]
Julien Beaumet et al.

D3885 | EGU2020-15536
Investigating the anthropogenic influence on the mesoscale over Kilimanjaro
Carolyne Pickler and Thomas Mölg

D3886 | EGU2020-16856
Impactful Tibetan Plateau Vortices: structure, lifecycle and environmental conditions
Julia Curio et al.

D3887 | EGU2020-1329
The impact of the Westerlies on the PBL growth and land surface energy balance on the north of the c [...]

B I Enter for line break
COMMUNICATIONS-INTENSIVE COURSES
COMMUNICATIONS-INTENSIVE COURSES
WHAT ARE CI-BADGED COURSES?

Ci-badged courses are courses that consist of a syllabus with components that explicitly develop students’ communication-related:

<table>
<thead>
<tr>
<th>Knowledge</th>
<th>Skills</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>understanding of communication as it relates to human interaction</td>
<td>skills in communicating effectively with others, using language and/or other means</td>
<td>the attributes of effective communicators</td>
</tr>
</tbody>
</table>
WHAT ARE THE FORMAL REQUIREMENTS FOR CI-BADGING?

CI-badged courses are subject to the following formal requirements:

1. The course documentation of CI-badged courses must clearly specify communication-related course learning outcomes (in terms of communication related knowledge, skills and attributes).
WHAT ARE THE FORMAL REQUIREMENTS FOR CI-BADGING?

2. Ci-badged course learning outcomes must include learning outcomes that relate specifically to at least two of the following four communication 'literacies':

ORAL LITERACY

The ability to communicate through spoken texts that are constructed with the appropriate content, structure and language features, fit for their intended academic or professional purpose and audience.

WRITTEN LITERACY

The ability to communicate through written texts that are constructed with the appropriate content, structure and language features, fit for their intended academic or professional purpose and audience.

VISUAL LITERACY

The ability to communicate in speech and writing through appropriate visual modes (e.g., diagrams, graphs, charts) and/or visual media (e.g., posters, 3-D printed objects, stage performances).

DIGITAL LITERACY

The ability to use appropriate information and communication technologies to find, evaluate, create, and communicate information in speech and writing (e.g., wikis, websites, virtual reality projects).
WHAT ARE THE FORMAL REQUIREMENTS FOR CI-BADGING?

2. **ORAL LITERACY**
 The ability to communicate through spoken texts that are constructed with the appropriate content, structure and language features, fit for their intended academic or professional purpose and audience.

3. **WRITTEN LITERACY**
 At least 40% of the course grade of a CI-badged course must be assigned to communication-rich assessment tasks relating specifically to communication-related knowledge, skills and attributes, as specified in the course learning outcomes. **Assessment rubrics** must be provided that describe expected student performance in these communication-rich assessment tasks.

4. **VISUAL LITERACY**
 The ability to communicate in speech and writing through appropriate visual modes (e.g., diagrams, graphs, charts) and/or visual media (e.g., posters, 3-D printed objects, stage performances).

5. **DIGITAL LITERACY**
 The ability to use appropriate information and communication technologies to find, evaluate, create, and communicate information in speech and writing (e.g., wikis, websites, virtual reality projects).
COMMUNICATIONS-INTENSIVE COURSES
COMMUNICATIONS-INTENSIVE COURSES
STAGE 1

CiC Committee endorsement of CiC certification application

A. Download C-I certification form
 1. Complete the form

B. Attach
 1. C-I certification Form
 2. Course syllabus, grade descriptors and assessment rubrics

C. Submit
 Contact the CiC Committee

D. Wait for feedback and endorsement from CiC Committee
every challenge is an opportunity

ONLINE PEDAGOGY
WIKIPEDIA
COMMUNICATIONS-INTENSIVE COURSES

Thank you, keep in touch!
aagwebb@hku.hk

P.S. This is Isua, SW Greenland. Geosciences: explore your world.